Decorative		Industrial				Automotive		Powe	Powder Coating			Specialty	
air drying	water- based	baking varnish	water- based	ероху	PUR	OEM	car refinish	polyester	hybrid epoxy		coil coating	LCD	
٠	•		0	0									
•	•	•	•	•				•	•	•	0	0	
•		•		0		•	•	•	•				
٠	•	•	•	•				•	•	•	0	0	
٠	•	•	•	•	•			•	•	•	0		
٠	•	•	•	•				0	0		0		
٠	•	•	•	•				0	0		0		
٠	•	•	•	•		•	•	•	•				
٠	•		0	0									
٠	•		•										
•	•		•										
٠	•	•	•		•			•	•	•	0		
٠		•		0	•	•	•	•	•		0	0	
٠		•		0	0	•	•	•	•			0	
٠	•	•	•			•	•	•	•		•		
0	0	•	•	•	•	•		0	0	0			
٠	•	•	•	•		•	•	•	•		0		
٠	•												
٠	•	•	•	0	•	0		•	•	•	0		
٠	•	•	•	•				0	0				
•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•			•	•	•	0		
٠	•												
•	•	0	•										
•	•	•	•	•	•	•	•	•	•	•		•	
•	•	•	•	•	•	•	•	•	•	•	•		
٠	•												
•		•		•		0	0	0	0				
•	•	•	•	•			0	•	•				
•	•	•	•	•	•			•	•				
•	0	0						0	0				
•	•	•	•	•		•		•	•	•			
•	•	•	•	•	•	•		•	•	•	0		
•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•				•	•	
٠	•	•	•	•	•			•	•	•	•		
•	•	•	•	•	•			•	•	•	•		
•	•	•	•	•	•			٠	•	•	•	0	

Synthesia, a. s., SBU Pigments and Dyes Semtín 103, 530 02 Pardubice, Czech Republic e-mail: colorants@synthesia.eu

Sales of pigments - phone: +420 466 823 741, fax: +420 466 823 608 e-mail: pigments@synthesia.eu

Technical service - phone: +420 466 823 730, fax: +420 466 823 608 e-mail: technicals@synthesia.eu

Affiliations abroad

Synthesia, Moscow Representative 3. Tverskaya – Yamskaya, dom 36, 125047 Moscow, Russia phone: +7 903 661 5374, +420 724 401 122 e-mail: office.moscow@synthesia.eu

Synthesia Polska Sp. z o. o.

Al. Kościuszki 80/82, 90-437 Łódž, Poland phone/fax: +48 426 375 720, e-mail: jan.hronek@synthesia.com.pl

www.synthesia.eu

Application possibilities • main application • O side application

Versa erganic pigments for paints

0

- Atte

COLOURS FOR FUTURE

Ti0 ₂						
1.1	1.10	Trade Name Versal®	C Pigment	Chem Type	HP Pigment	Opacity
1.1	1.10	Vellow 10G	Vellow 3	Monoazo	in Figurent	medium
		Vellow 8GN	Vellow 128	Disazo Cond	•	low
		Vellow H4G	Vellow 151	Benzimidazolone	•	high
			Vellow 93	Disazo Cond		modium
		Vollow 5CD	Vollow 155	Pisacotoacotarvlido		high
		Yellow 4C	Vellow 155	Bisacetoacetarylide	•	modium
		Yellow 40	Yellow 155	Bisacetoacetarylide	•	medium
			Yellow 155	Bisacetoacetaryilde	•	medium
			Yellow 154	Benzimidazoione	•	medium
		Yellow 5GXW	Yellow 74	Monoazo		
		Yellow 2GXS	Yellow 74	Monoazo		high
		Yellow 2GXD	Yellow 74	Monoazo		high
		Yellow GR	Yellow 95	Disazo Cond.	•	low
		Yellow 5RD	Yellow 139	Isoindoline	•	high
		Yellow 6RD	Yellow 139	Isoindoline	•	high
		Yellow 3R	Yellow 110	Isoindolinone	•	high
		Orange RA	Orange 73	Diketopyrrolopyrrole	•	high
		Orange HLD	Orange 36	Benzimidazolone	•	high
		Red 2G	Red 4	ß-naphthol		high
		Scarlet 4RF	Red 242	Disazo Cond.	•	low
		Red HF3S	Red 188	Naphthol AS		medium
		Scarlet DPEK	Red 255	Diketopyrrolopyrrole	•	high
		Scarlet R	Red 166	Disazo Cond.	•	medium
		Scarlet GRN	Red 3	ß-naphthol		medium
		Red FGRD	Red 112	Naphthol AS		high
		Red DP3G	Red 254	Diketopyrrolopyrrole	•	high
		Red DP2G	Red 254	Diketopyrrolopyrrole	•	high
		Red F2RA	Red 2	Naphthol AS		medium
		Red F2RKD	Red 170	Naphthol AS		high
		Red F3RKD	Red 170	Naphthol AS		high
		Red F5RK	Red 170	Naphthol AS		low
		Red 3RL	Red 48:3	BONA, Sr		medium
		Red BRN	Red 214	Disazo Cond.	•	medium
		Red BR	Red 144	Disazo Cond.	•	medium
		Red A2BN	Red 177	Anthraquinone	•	medium
		Red A2B	Red 177	Anthraquinone	•	low
		Blue ASG	Blue 15:1	Phthalocyanine		medium
		Blue LBS	Blue 15:3	Phthalocyanine		medium
		Green BG	Green 7	Phthalocyanine		medium
_					1	

Ligh	t	Weathering								
full shade	1/3	full shade	1/3	Xylene	Acetone	Butylacetate	Ethanol	Water	HCI 2.5 %	NaOH 2.5 %
7	6-7	4-5	4	2	2-3	2	З	5	5	5
7-8	7	4	3-4	5	3-4	4-5	5	5	5	5
7-8	7-8	5	4	4-5	4-5	5	5	5	5	3
7-8	7	4-5	4	5	5	5	5	5	5	5
7-8	7	4-5	4	4-5	4	4-5	5	5	5	5
7-8	7	4-5	4	4-5	4	4-5	4-5	5	5	5
7-8	7	4-5	4	4-5	4	4-5	5	5	5	5
7-8	7-8	5	4-5	5	4-5	5	4-5	5	5	5
6-7	5-6	4-5	2-3	З	З	3	4	5	5	5
7	6	4-5	4	2-3	2-3	2-3	З	5	5	5
7	6	4-5	4	З	3	3	4	5	5	5
7-8	7-8	4-5	4	5	5	5	5	5	5	5
7-8	7	4-5	4	4-5	4-5	4-5	4-5	5	5	З
7-8	7	4-5	4	5	5	5	5	5	5	3
6-7	6-7	4-5	4	4-5	З	З	5	5	5	5
7-8	7	4-5	4	5	4	4	4-5	5	5	5
7-8	7	4	3-4	4-5	4-5	4-5	4-5	5	5	5
6	3-4	2-3	2	2	2-3	2-3	3-4	5	5	5
7-8	7	4	3-4	4	3-4	4	4-5	5	5	5
6-7	6	3-4	З	4	4	4	4-5	5	5	5
7-8	7-8	4-5	4-5	5	4	4-5	4-5	5	5	5
7-8	7	4	3-4	4-5	5	4-5	5	5	5	5
7	4-5	4	2	З	2	2-3	2-3	4-5	5	5
7-8	6-7	4-5	З	2-3	3	3	3-4	5	5	5
7-8	7	4-5	4	5	4	5	5	5	5	5
7-8	7	4-5	4	4-5	З	4	4	5	5	5
6-7	4-5	3	2	2	2	2	2	5	5	5
7-8	7	4	З	4-5	4	4-5	4-5	5	5	5
7	5-6	4	2	4-5	4	4-5	4-5	5	5	5
6D	5	ЗD	2	4-5	3	4	4	5	5	5
6	4	3-4D	1-2	5	5	5	4-5	4-5	4	4
7-8	7-8	4D	3-4	4	4-5	4-5	5	5	5	5
7-8	7-8	4D	3-4	4-5	4-5	4-5	5	5	5	5
7-8	7	4	З	5	4	4-5	4-5	5	5	5
7-8	7	4	З	5	4	4-5	4-5	5	5	5
7-8	7-8	4-5	4-5	5	5	5	5	5	5	5
7-8	7-8	4-5	4-5	5	5	5	5	5	5	5
7-8	7-8	4-5	4-5	5	5	5	5	5	5	5

Synthesia, a.s.

Synthesia is the largest Czech manufacturer of chemical specialities with more than 95 years' tradition. Synthesia respects the company objective to offer top products with high added value and specialized customer solutions, including not only production but also development activities and services.

We are the leading Central European producer of organic pigments and dyes and the only producer of high performance pigments in Central Europe. Our company has experience in sales all over the world, especially in the most demanding markets in Western and Eastern Europe as well as the U.S.A.

VERSAL[®]

Due to the same chemical structure, identical or very close matching colour shade and other important properties a large number of pigments can be replaced by Versal pigments.

The assortment VERSAL[®] is formed by various chemical types and can be used in wide range of application in such as coatings, printing inks, plastics, fibres, particularly if special technical properties are required.

The most significant part of VERSAL® pigments (High-Performance Pigments) is above all a provision of very good fastness to light and weathering, heat resistance, fastness to solvents and chemicals and due to these excellent properties can be used in the most demanding applications.

In this pattern card VERSAL® pigments are illustrated and determined especially with respect for the paint industry. VERSAL® pigments are technically pure products distinguished by persistent colour qualities and controlled fastness properties. All VERSAL® pigments are suitable for mutual combination.

APPLICATION FASTNESS

Light fastness - Xenotest

- determined by ČSN EN ISO 105-B02: 2000 (80 0147) and evaluated in 1/3 and 1/1 of standard depth and in full shade; by it degree 1 denotes the lowest fastness and degree 8 the highest one.

Weathering fastness - Xenotest

- determined by ČSN EN ISO 105-B04: 1998 (80 0171) and evaluated in 1/3 and 1/1 of standard depth and in full shade; by it degree 1 denotes the lowest fastness, degree 5 the highest one.

Fastness to solvents

- colouring of solvent after 24 h at 20 °C according to ISO grey scale is determined; degree 1 denotes the lowest fastness, degree
5 the highest one.